The CEA Certification Exam is a four-hour open book exam. The examination questions are based on the Body of Knowledge listed below. Because of the diversity and background and experience of Energy Auditors, the examination has 10 different subject sections, all of which are included in the exam. You must bring a hand-held calculator to the exam as the CEA exam does not allow computers, tablets, or cell phones to be used during the test.

It is highly recommended that you review the complete Study Guide and answer the 20 Exam Review questions included in the Study Guide to determine your readiness for the exam.

The CEA Examination contains the following mandatory subjects:

<table>
<thead>
<tr>
<th>Body of Knowledge</th>
<th>Percent of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing an Audit Strategy & Plan</td>
<td>12 - 18 %</td>
</tr>
<tr>
<td>Utility Analysis, Renewable Opportunities</td>
<td>11 - 17 %</td>
</tr>
<tr>
<td>Data Collection & Economic Analysis</td>
<td>11 – 17 %</td>
</tr>
<tr>
<td>Lighting Systems</td>
<td>7 - 10 %</td>
</tr>
<tr>
<td>HVAC & Heating Systems</td>
<td>16 - 24 %</td>
</tr>
<tr>
<td>Motors, Drives & Compressed Air</td>
<td>7 - 10 %</td>
</tr>
<tr>
<td>Ventilation Systems</td>
<td>4 - 6 %</td>
</tr>
<tr>
<td>Domestic Hot Water Systems</td>
<td>4 – 5 %</td>
</tr>
<tr>
<td>Building Envelope</td>
<td>3 – 5 %</td>
</tr>
<tr>
<td>Water Conservation</td>
<td>3 - 4 %</td>
</tr>
</tbody>
</table>
CERTIFIED ENERGY AUDITOR™ (CEA® EXAM)

The following is a list of the subjects for the CEA exam. Each subject covers a number of topics. Following the list of topics are suggested references with chapter numbers. The primary references are the Handbook of Energy Audits, 9th Edition, by Albert Thumann, Terry Niehus, and William J. Younger, the Commercial Energy Auditing Reference Handbook, 2nd Edition by Steve Doty, and the Energy Management Handbook, 8th Edition by Steve Doty and Wayne C. Turner. However, some other books are also referenced as appropriate.

The study guide will not lead you to answers to all of the questions, but it will certainly lead you to a very large number of correct answers. A person with the necessary experience who reviews the study guide should not have any problem passing the exam.

The exam will be open book, last four hours, and have 140 multiple choice questions to answer. Of the 140 questions, 130 are scored and 10 randomly located questions are trial questions being prepared for possible use on future exams. The 10 trial questions do not count toward the examinee’s score. The trial questions are randomly located and are not identified. Therefore, all 140 questions should be answered. There are 10 sections listed below from which questions mainly are drawn.

BODY OF KNOWLEDGE: STUDY GUIDE TOPICS & REFERENCES

Developing an Energy Audit Strategy and Plan
- Energy auditing fundamentals
- Energy and power units; Conversion factors
- Audit instrumentation
- Safety requirements and procedures
- Plan Energy Audit
- Define Required Audit procedures
- Select the Project team
- Analyze & Breakdown Energy end use
- Determine Appropriate Audit Level
- Define Pre-audit tasks
- Define Data required for energy analysis
- Estimate cooling and heating loads for the system or facility
- Plan a Pre-audit interview-
- Communicate procedures and data gathering
- Identify operations and maintenance team and create pre-audit O&M interview questions.
- Define audit report format and requirements
- Draft Audit report
- Select appropriate instrumentation

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapter 1

Utility Analysis
- Demand and energy
- Power factor
- Define Required utility information
- Review Rate classifications
- Establish utility costs baseline
- Establish utility usage baseline
- Facility benchmarking
- Estimate savings potential
- Identify billing errors
- Verify Energy bill calculations
Select optimal Rate options

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapters 2 and 3
REF: Doty, *Commercial Energy Auditing Reference Handbook*, Chapter 1

Renewable Energy
Evaluate opportunities for use of renewable energy source

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapter 16

Data Collection and Economic Analysis
Energy accounting
Define pre-site Data collection
Collect pre-site Data
Define on-site Data collection
Collect on-site Data
Calculate Energy savings and payback
Evaluate Energy management opportunities
Evaluate O&M characteristics and opportunities
Detailed financial analysis
Interactive effects of measures
Computer simulations
Evaluate option for Cogen opportunity
Perform savings calculations

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapter 2 and 4

Lighting Systems
Measurement of light
Determine Efficiency/efficacy of light source
Determine Appropriate Light color-CCT/CRI
Evaluate Lamp lumen depreciation
Calculate replacement period given Lamp lumen depreciation
Determine Lamp types and characteristics
Evaluate Lamp types & characteristics for replacement
Audit Lighting Control System
Calculate replacement period given Lamp lumen depreciation
Lighting power allowances

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapters 7

HVAC Systems
HVAC basics
Heat Pump classifications
Heat Pump operations
Audit & determine types of HVAC systems
Calculate estimated heating & cooling loads
Identify any special ventilation code requirements that may or may not be met at this time.
Determine existing HVAC efficiencies
Identify existing control strategies including locations of thermostats, scheduling of loads and occupants.
Evaluate ductwork and fan systems for leaks, insulation and or pressure drop
Identify HVAC system components
Audit & determine types of chillers: electric, gas driven, absorbers
Identify piping arrangements for chilled water and or refrigerant systems
Audit & determine types of heat pump, chillers, or split system units
Analyze heat pump or split system efficiencies

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapter 9

Heating Systems
Audit & determine types of boilers: fire tube, water tube, cast iron
Audit & determine types of furnaces: electric, gas, pulse, condensing
Evaluate distribution systems, (ductwork and or piping), for insulation, pressure drop, leaks.
Compare terminal units

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapters 8
REF: Doty, *Commercial Energy Auditing Reference Handbook*, Chapter 1

Motors and Drives
Audit & determine types and sizes of motors
Evaluate appropriate types of motors
Determine operating characteristics of motors and drives
Calculate efficiencies of motors and drives
Review potential energy savings of variable frequency drives

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapters 7

Compressed Air Systems
Analyze existing conditions for improvement opportunities
Evaluate for upgrade to DDC
Perform savings calculations

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapter 10

Ventilation Systems
Audit & determine types of ventilation systems
Define characteristics
Ventilation requirements, (code related).
Ventilation control options
Determine heat recovery options

REF: Thumann, Niehus, and Younger, *Handbook of Energy Auditing*, Chapters 10
Domestic Hot Water Systems
Audit & determine types of hot water systems
Calculate efficiencies
Identify temperature set points
Evaluate circulating pumps
Evaluate energy savings opportunity for heat pump water heaters

REF: Thumann, Niehus, and Younger, Handbook of Energy Auditing, Chapter 13
REF: Doty, Commercial Energy Auditing Reference Handbook, Chapter 18

Building Envelope
Heat flow concept
Determine R and U values
Evaluate efficiency of walls, roofs, windows
Evaluate replacement with Low E glass
Audit building envelope infiltration
Balance point temperature
Thermal weight

REF: Doty and Turner, Energy Management Handbook, Chapter 9
REF: Thumann, Niehus, and Younger, Handbook of Energy Auditing, Chapter 6
REF: Doty, Commercial Energy Auditing Reference Handbook, Chapter 17

Water Conservation
Water conservation methods
Determine Rate structures
Apply Water conservation methods
Evaluate Irrigation and landscaping installation and efficiency
Survey Leak detection system
Audit water use

REF: Doty, Commercial Energy Auditing Reference Handbook, Chapter 18
EXAM REVIEW QUESTIONS (Sample Only)

Some of these review questions may be more complex or difficult than the exam but will be good practice problems.

1. Which of the following is not always correct?
 (A) 10 kWh = 34,120 Btus
 (B) 5 therms = 500,000 Btus
 (C) 3 tons = 36,000 Btu/hr
 (D) 1 MCF = 1 MMbtu

2. A factory has a kWh usage in August of 550,000 and a peak demand of 3,000 kW. Calculate the July energy and demand charges if the utility costs for this rate class are $0.06/kWh and $15/kW-month for demand.
 (A) $33,000
 (B) $60,000
 (C) $78,000
 (D) $45,000

3. The lighting efficacy term is lumens per watt.
 (A) True
 (B) False

4. A chiller has a full load rating of 0.7 kW/ton. What is the full load kW if this unit has a 200 ton rating?
 (A) 286
 (B) 140
 (C) 900
 (D) 75

5. An office building replaced 20 W CFLs with 14 W LEDs. The lights are on 3,000 hrs/yr. The average electricity cost is $0.10/kWh and the LEDs are $12 each. Calculate the simple payback.
 (A) 6.67 years
 (B) 8.67 years
 (C) 0.15 years
 (D) 4.25 years

6. A customer wants to install an occupancy sensor in the break room. A data logger has shown that, on average, the lights can be turned off 5 hrs/week. The lights in this room have a combined wattage of 3 kW. Electricity is $0.09/kWh and an occupancy sensor cost $150 installed. What is the simple payback?
 (A) 0.47 years
 (B) 3.63 years
 (C) 0.90 years
 (D) 2.14 years
7. A commercial customer has set a peak demand of 100 kW and has used 45,500 kWh for January. Calculate the load factor.
 (A) 0.61
 (B) 0.42
 (C) 0.81
 (D) 1.63

8. The terms load factor and power factor can be used interchangeably.
 (A) True
 (B) False

9. A three phase induction motor draws 13 amps at 240 volts. The power factor is 0.9. Determine the kW.
 (A) 5.54
 (B) 5.16
 (C) 4.86
 (D) 6.32

10. A hospital uses 400,000 gallons of water per year just for showers. The showers have the old style showerheads that use 4.5 gpm. What is the annual amount of water saved if they replace the showerheads with new ones that comply with the maximum flow rates allowed per the Energy Policy Act of 1992?
 (A) 200,000 gallons per year
 (B) 285,765 gallons per year
 (C) 222,222 gallons per year
 (D) 177,778 gallons per year

11. An office building has the following:
 Existing: 100 T-12 fixtures @ 164 watt/fixture
 Proposed: 100 T-8 fixtures @ 106 watts/fixture
 4,000 hrs/yr operation
 Utility costs: $.10/kWh and $13/kW-month
 Installation cost: $100/fixture
 Determine the simple payback.
 (A) 0.32 years
 (B) 1.86 years
 (C) 3.10 years
 (D) 2.46 years

12. A company has a 1 MMBtu/hr boiler with an efficiency of 70%. They want to replace it with a 90% efficient condensing boiler. The average fuel usage for the last five heating seasons was 20,000 therms. If a therm cost $0.60, calculate the annual savings per heating season.
 (A) $4,388
 (B) $2,667
 (C) $10,000
 (D) $3,185
13. The speed of a three phase induction motor is determined by the line voltage.
 (A) True
 (B) False

14. A 20 HP standard fan motor runs 8,760 hours per year has an efficiency of 86.5%. What will the simple payback be for replacing this motor with a 20 HP premium one with an efficiency of 93.5%? The premium motor cost $725 installed. The utility charges are $0.05/kWh and $14.00/kW-month. Motor loading is 0.7.
 (A) 0.75 years
 (B) 2.65 years
 (C) 1.33 years
 (D) 3.33 years

15. How many Btu/hr of cooling are supplied by a chiller with a 45°F chilled water supply temperature, a 57°F chilled water return temperature and a 2.5 gpm water pump?
 (A) 9,252 Btu/hr
 (B) 12,000 Btu/hr
 (C) 120,000 Btu/hr
 (D) 15,000 Btu/hr

16. A building wall is made up of the following materials:
 Concrete block- R = 2.2
 Brick façade- R = 3.1
 Drywall- U= 0.5

 What is the total R value of this wall?
 (A) 5.8
 (B) 7.3
 (C) 6.4
 (D) 1.9

17. Motor slip is defined as:
 (A) Pulley displacement
 (B) Percentage of winding drift
 (C) The difference between the synchronous speed and actual speed
 (D) The difference between nominal efficiency and actual efficiency

18. An absorption chiller has a COP of 0.7. What is the EER?
 (A) 4.87
 (B) 13.2
 (C) 3.41
 (D) 2.39
19. A four ton heat pump with a SEER of 14 and an HSPF of 8.0 operates 3,100 full load hours/yr in the cooling mode and 1,200 hours/yr in the heating mode. What is the annual operating cost if electricity is $0.15/kWh?
 (A) $2,675/yr
 (B) $3,200/yr
 (C) $4,878/yr
 (D) $1,320/yr

20. Motor slip is proportional to loading.
 (A) True
 (B) False

Answer Key:

1- D
2- C
3- A
4- B
5- A
6- D
7- A
8- B
9- C
10- D
11- C
12- B
13- B
14- C
15- D
16- B
17- C
18- D
19- A
20- A

For a listing of AEE Certification Programs: Visit www.aeecenter.org/certification
For a listing of Remote Testing Centers: Visit www.aeecenter.org/certification/cea

CEA® is a registered trade mark of the Association of Energy Engineers. The information contained herewith is for informational purposes only and does not imply endorsement from AEE in any kind.

CEA application, procedures, requirements, and eligibility are subject to change.
RECOMMENDED TEXTS FOR CEA EXAM PREPARATION

These books can be ordered online at https://www.crcpress.com/

ENERGY MANAGEMENT HANDBOOK, 9th Edition
By Steve Doty, Stephen Roosa, and Wayne C. Turner

Newly revised and edited, this comprehensive handbook is recognized as the definitive stand-alone energy manager's desk reference, used by tens of thousands of professionals throughout the energy management industry. This new ninth edition includes new chapters on energy management controls systems, compressed air systems, renewable energy, and carbon reduction.

ISBN: 9781138666979, 8½ x 11, 893 pp., Illus., Hardcover, Price: $260.00

HANDBOOK OF ENERGY AUDITS, 9th Edition
By Albert Thumann, Terry Niehus, and William Younger

This best-selling handbook is the most comprehensive and practical reference available on energy auditing in buildings and industry. Completely edited throughout, this latest edition includes new chapters on investment grade energy audits and retro-commissioning audits, as well as new information on ISO 50001 and the Superior Energy Performance program.

ISBN: 9781466561325, 6 x 9, 495 pp., Illus., Hardcover, Price: $145.00

COMMERCIAL ENERGY AUDITING REFERENCE HANDBOOK, 3rd Edition
By Steve Doty

This book is designed to serve as a comprehensive resource for performing energy audits in commercial facilities. The fully revised new edition has been updated and expanded throughout, including new chapters on water efficiency, and impact of the human and behavioral aspects of energy management, as well as discussion of regression, use of energy consumption signatures as an operational control, and interval data information.

ISBN: 9781498769266, 6 x 9, Illus.700 pp., Hardcover, Order Code: 0716 Price: $155.00